Pre-class Warm-up!!!

Find the best way to complete the sentence:

One Joule is

a. the force required to accelerate 1 gram at 1 cm/sec

b. the energy required to raise the temperature of 1 cubic centimeter of water by 1 degree centigrade

c. the work done in lifting 1 kilogram through 1 meter

d. the work done by 1 Newton moving a distance of 1 meter e. None of the above. Kind of candy?

Should Joule have a capital J?

No

7.1 The path integral 7.2 The line integral	
7.1 The pain integral 7.2 The line integral	We do not need to know:
We learn:	Total curvature in 7.1
	• Simple curves, closed curves in 7.2
 Two closely related integrals along a path or 	You are not tested on the
curve	'theoretical things'.
How to set them up and evaluate them	
Physical interpretation	
Different notation for these integrals	Types of question:
Orientation of a curve	mainly evaluate the integrals
Theoretical things: independence of the	
parametrization of the curve (up to orientation	
for line integrals); Riemann sums.	
The line integral of a gradient vector field	

The two kinds of integral Both take a path $c : [a,b] \rightarrow R^n$ (In the book n = 3.) We want to assume $c'(t) \neq 0$ always. Thus c traces along the curve from one end to the other, without retracing itself. The orientation of c is the direction we travel along the curve There are two orientations.

For the path integral in 7.1 we take a scalar function f: R^n -> R and define $\int f ds = \int f(c(t)) ||c'(t)|| dt$ If $f(x_1, ..., x_n) = 1$ always this gives the arc length of a between t=a and t=b. More generally the integral gives the curvy area under the graph of f.

For the line integral in 7.2 we take a vector field $F: R^n \rightarrow R^n$ and define = $F_1 dx_1 + F_2 dx_2 + \cdots + F_n dx_n$

Physical interpretation: Work done by a vector field on a particle morning along the path c

Questions in 7.1

These are either: find a parametrization of a given curve. Sometimes it is given in pieces and you have to parametrize it in pieces.

Or: evaluate the integral.

Badquettan

Like question 10.

A wire is bent into a helix parametrized by $c(t) = (\cos t, \sin t, t)$ where $0 \le t \le \pi$. The wire has variable line-density that is $xy + z^{\eta}$ at position (x,y,z). Find the mass of the wire.

sometimes this & veca

The mass is $\int_{C} (xy+z) ds$

$$= \int_{0}^{\infty} (xy+z)|c'(t)|dt$$

$$= \int_0^{\pi} (\cos t \sin t + t) / (\sin t)^2 (\cos t)^2 + 1^2 dt$$

$$= \left(\frac{1}{2} \sin^2 t + \frac{t^2}{2}\right) \sqrt{2} = \left(0 + \frac{\pi^2}{2} - 0 - 0\right) \sqrt{2}$$

Curry area under graph, mass of when

These are: calculate the integral

Like Question 5:

Calculate the work done by the force field E(x,y,z) = (y,y,z) in moving a particle along

F(x,y,z) = (y,-x,z) in moving a particle along the parabola $y = x^2$, z = 0 from x = -1 to x = 2.

Step 1 parametrize the path

he work is

F.
$$ds = (y, -x, z) \cdot (1, 2t, 0) dt$$

= $(t^2, -t, 0) \cdot (1, 2t, 0) dt$

= $(t^2 - 2t^2 + 0) dt = (-t^3)^2$

8 (1)

Question: What does it mean if the work done by a force field is negative?

- a. the question was wrongb. the method of doing the question was wrongc. energy was transferred from the particle
- d. energy was transferred to the particle e. None of the above.

Let $f: R^n \rightarrow R$ and let $c: [a,b] \rightarrow R^n$ be a path.

Theorem 3 of 7.2

Then
$$\int \nabla f \cdot ds = f(c(b)) - f(c(a))$$
.

Example: if $f: [a, b] \rightarrow \mathbb{R}$

then
$$\int \nabla f \cdot ds = \int \frac{df}{dx} dx$$
 $\int \frac{df}{dx} = \int \frac{\partial f}{\partial x_i} \cdot \int \frac{\partial f}{\partial x_i}$

If c and p have the opposite orientation then

$$\int_{c} F \cdot ds = -\int_{c} F \cdot ds$$

$$= \int_{c} \int_{c}$$

Example
Find the work done by
$$F(x,y) = (2xy, x^2)$$
 in moving along the path $c(t) = (\sqrt{1+t^2})$, $e^{(\sin t)}$ from $t = 0$ to $t = 1$.

Solution

Observe that

 $F = (2xy, x^2) = \sqrt{f}$ where

 $F(x,y) = x^2y$

Work done is

 $F = f(x,y) = x^2y$
 $F(x,y) = x^2y$
 $F(x,y) = f(x,y) = f(x,y)$
 $F(x,y) = f(x,$